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-1 ABSTRACT

This report suamrizes almost seven years of ezperimental and analytical

studies of the heat transfer behavior of the turtulent boundary layer. The

principal objective has been the acquisition of a reliable data base and its

modeling by means of a finite-difference computer program. Experimental re-

suits are provided to the computer in terms of values and variations of

mixing length parameters and turbulent Prandtl numbers. The data base covers

a wide range of boundary conditions and free stream conditions:

Free stream velocities:--unifom velocity; accelerations at

constant K up to "relaminarization"; decelerations at

constant B, bt-:< not including separation.

-- Transpiratlon:--blowing and suction at constant blowing

fraction F; at. constant blowing parameter B; and with

i - - -stepwise and arbitrary variations.

SWall temperature:--uniform, stepwise and arbitrary distribu- I
tions. I

It is shown that a single pair of functions (one for A and one for turbulent

Prandtl number) suffice to recover all of the data. Both the surface data (skin

friction and Stanton number) and the profiles of mean velocity and temperature

are predictable with acceptable accuracy.
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Nomenclature

Enal ish
Letter
Syrr&ol s

A+ Dimensionless length scale for the damping function, Eq. (53).

Blowing parameter of the heat transfer problem, eq. (5).

Bm Blowing parameter of the momentum problem, Eq. (3).

c Specific heat at constant pressure, Btu/lbG°F.

Cf Coefficient of skin friction.

CfO Coefficient of skin friction with no transpiration,
0 other factors remaining constant, Eq. (47).

D Damping function for mixing length.

J F Blowing fraction, p0Vo/p UA.

gc Gravitational constant, ft/sec2 lbf/lbm.

G Clauser shepe factor, Eq. (11).
G Mass velocity of the free stream, lbm/ft2sec.

H Shape factor, 61/62.2

k Mixing length constant.

K Acceleration parameter, Eq. (15).

I9. Mixing length.

JZT Length scale of turbulence.

m Exponent describing free stream velocity variation in decelerating
flows, Eq. (1).

n"p Transpiration rate, lbm/sec ft 2.

p Pressure.
p+ Dimensionless pressure, -

Pr Prandtl number.

Prt Turbulent Prandtl number, Eq. (59).

Heat transfer rate, Btu/sec ft 2 .
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Enq ish
Letter
Symols

Reh Enthalpy thickness Reynolds number, G0I.. J
Rem Momentumn thickness Reynolds number, %,6 /v.
Ret Turbulence Reynolds number, Eq. (50).

St Stanton number.

Sto Stanton number with no transpiration, other factors remaining
constant.

t Temperature.

to Surface temperature, OF.

T Dimensionless temperature, Eq. (28).
+td Dimensionless temperature, Eq. (28).

td Dimensionless temperature defect, Eq. (18).

tQ0 Temperature of free stream, OF.

u Velocity, ft/sec.

u Fluctuating component of u, ft/sec.
u Dimensionless velocity, u/U, or time-averaged velocity.U

u Dimensionless velocity, u/UU. Velocity of the free stream, ft/sec.

Shear velocity, rg
v 0 Velocity of the transpired fluid, at the wall.
v+ Velocity of the transpired fluid, at the wall, dimensionless, vN/U0 0
vt Fluctuating component of v.

Dimensionless velocity, v/U, or time-averaged velocity,
x Distance in the stream-wise direction, ft.
y Distance normal to the wall, ft.
z Distance normal to the flow, parallel to the surface, ft.
Y Dimensionless distance from the wall, yU /v.
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Greek
Letter
Symbo I s

* "Thennal diffusivity, k/pc.

- Pressure gradient parameter, Eq. (6).

6( ) Uncertainty in (), Eq. (29).

699 Boundary layer thickness to the location of u/U- 0.99.

61 Displacement thickness.

- 62 Momentum thickness.

63 Clauser thickness, Eq. (10).

-Ch Turbulent diffusivity for heat, Eq. (58).

em Turbulent diffusivity for momentum, Eq. (44).

A2 Enthalpy thickness.

A3  Defect enthalpy thickness, Eq. (19).

A Mixing length proportionality factor, Eq. (55).

PO Uensity evaluated at the surface, lbdft3 .

• p• Density evaluated in the free stream, lbm/ft 3 .

"T Shear stress, lbf/ft2 .

T Shear stress at the surface, lbf/ft2 .

Tt Turbulent shear stress.

V Kinematic viscosity, ft 2 /sec.
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SINTRODUCTION.

The boundary layer with transpiration thru the solid surface is a

variant of the general boundary layer problem that has been of considerable

interest in technical applications for at-least two decades. In the early

1950's transpiration was being extensively investigated as a means of cool-

ing aerodynamic surfaces under high velocity flight conditions. But tran-

spira-tion from a solid surface over which a fluid is flowing, and on which

a boundary layer is developing, is of interest in a large number of quite

different types of applications, of which transpiration cooling is only

one.

In the typical transpiration cooling application, the solid surface

is constructed of some kind of porous solid material. Cooling fluid,

which may be chemically the same as the free-stream, is then forced through

the sutface with the objective of protecting che surface from a hot free-

stream. This. is a boundary layer problem for which the normal component

of velocity at the solid-fluid interface is non-zero, but otherwise the

sai'e momentum and energy boundary layer differential equation must be

solved as for the i'ontranspired boundary layer. A variation on this prob-

lem occurs when the cooling fluid is a chemically different specie than

the free-stream fluid. For example, helium might be injected as a

coolant to protect a surface from a high temperature air free-stream. In

this case the mass-diffusion equation of the boundary layer must be solved

in addition to the momentum and energy equations. There are obviously

similarities between these two types of problems, but also fundlmental dif-

ferences. Enth are "mass transfer" problems in the sense that mass is trans-

ferred across the fluid-solid interface, but the latter is also a mass-dif-

fusion problem, while the former is not.
Ancther transpiration problem arises when there is evaporation or sub-

limation from an interface into a boundary layer, or condensation onto the

interface. A further variation on the problem arises when there is chemical

reaction either within the boundary layer or at the surf, e.

In any of the cases cited, the direction of the flow normal to the

surface at the interface could be into the surface, or it could be out

of the surface. The terms "blowing" and "suction" are frequently used to



denote the direction of flow ez the interface, while the word "transpiration"

generally is taken to embrace both cases. Suction is sometimes used as a

scheme for aerodynamic boundary layer control because it is possible to in-

hibit or prevent boundary layer separation by suction.

These various types of applications suggest why chemical, mechanical

and aeronautical engineers have all made significant contributions to the

theory, and the terminology to a certain extent reflects these various

origins of interest.

In the class of problem considered here it is assumed that the surface.

is aerodynamically smooth, and that the holes or pores in the surface through

which the transpiration fluid flows are sufficiently small relative to the

boundary layer-thickness so--that the velocity normal to the surface may be

treated as uniform over every small region. (If the holes are large,
with large spacing, the boundary layer structure is altered. Although the

resulting boundary layer may have some of the characteristics of the tran-

spired boundary layer, that problem will not be considered here.)

The transpired boundary -ayer may be laminar or turbulent. The laminar

boundary layer with transpiration has been extensively studied, resulting in

a large number of exact mathematical solutions for certain fundamental cases

where similarity in velocity profiles, and in temperature profiles, is

obtained, and various approximate methods have been developed to handle-cases

when similarity does not exist. More recently finite difference solutions

have become so easy to obtain with digital computers, f3r any kind of

boundary conditions, that fcrther investigation of the laminar boundary layer

does not appear very fruitful, except for some very special cases. The

turbulent boundary layer, on the other hand, is not nearly so well under-

stood, even without transpiration. Up until about ton years ago there were

remarkably few experimental data available for the transpired turbulent

boundary layer. Mickley et al. (1954, 1957) at MIT had, during the 1950's,

studied the momentum and cuncentration boundary layers; very little had been

done with the thermal boundary layer. Certa4nly there were insufficient

data of adequate accuracy to provide the basis for anything approaching a

complete turbulent boundary layer theory. In the 1960's experimental

activity went forward with increasinr; intensity in various parts of the

world, and in 1965 the authors joined in this effort.
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At the present time the behavior of the turbulent transpired momentum

boundary layer for an essentially incompressible fluid is fairly well under-

stood for a sufficient range of boundary conditions to make it worthwhile to

attempt to sunmarize the available data, and the state-of-the-a-. in boundary

layer analytic prediction. A similar staterant can be made about the thermal

boundary layer, but only for fluids with Prandtl number near unit,,. This is

not to say that predictiors adequate for most engineering design cannot be
made for other fluids, but experimental confirmatory data are `-,..-.Ing. Data

on the turbulent transpired concentration boundary layer are ;:Onside#-ably 2
more scarce.. The concentration boundary layer problem is ;omplicated by the

fact that strong transpiration is. usually accompanied by-iarge fluid property

gradients caused by large concentration gradients, and this adds more variables

to the experiments. Of course if concentrations, and thus concentration

"gradients, are small, and if Lewis number is near unity, the behavior of
the concentration boundary layer should be identical to that of the thermal

boundary liayer.

In order to restrict this paper to a range of variables and boundary

conditions fur which there is now a considerable body of data, the scope of

- the paper will be restricted to the following:
(a) Momentum and thermal boundary layers only
(b) Constant fluid properties, so that the momentum and energy

equations are effectively de-coupled.
(c) Low velocity flows, with a similar result as in (b).
(d) Two-dimensional boundary layers.

(e) Steady flow.

(f) Aerodynamically smooth surface

(g) Injection or suction velocity uniform over each small area of

surface (though possibly varying in the streamwise direction

on a-larger scale)

Within this scope, the objective of the paper will be to summarize the

present status of our experimental knowledge of this family of boundary layer

flows, and to demonstrate how these flows can be predicted by a reasonably

simple mathematical model and a finite-difference calculation procedure.

- Because tne authors themselves have contributed much of the available data

to the literature, the main line of experimental data to be presented will

3



be author's own. Howevev, wherever practicable, comparisons will be made

with the data of others, because there are indeed some discrepancies and,

-consequently, some differences of opinion. The mathe-a-tical model to be

proposed is only one of several eddy-viscosity, eddy-ccnductivity awdels

discussed in the literature, all of which are actually very similar.

However, it is one that has-been used with considerable success by the

authors, as will be demonstrated. It is not a purpose of this paper to

critically evaluate various prediction sc!,,' nes. It is suggested that others

might find the experimental data summarized here to be useful for such an

evaluation.

The general problem considered is illustrated by reference to Fig. 1.

A fluid flows at a steady rate along a flat surface which is porous, and

through which fluid with the same composition can be forced into the boundary

layer or withdrawn from the boundary layer (blowing or suction). Reynolds

number is sufficiently high so that the boundary layer is turbulent. It is

presumed that the surface is aerodynamically smooth and that the velocity

"normal to the surface, whether positive or negative, is uniform over an

area large relative to the sublayer thickness. It is presumed that the

solid surface is a heat conductor, and that heat can be conducted to or from

the surface. It is further presumed that the surface construction is such

that the transpired fluid is in thermal equilibrium with the solid surface

at the interface. In general, our long range objective would be to consider

the case where the mass transfer rate P" (i.e., the transpiration rate)

is any arbitrary function of distance x along the surface, where the con-

vection heat transfer q" is any arbitrary function of distance x along

the surface (or the surface temperature to is any arbitrary function of

x ). We would like, ultimately, to consider the case where the free-stream

velocity U0, may vary in any arbitrary manner with x , but we will restrict

free-stream temperature t., to a constant. The boundary layer is two-

dimensional, with the co-ordinate y used to measure the distance normal

to the surface (i.e., all properties are uniform with respect to the Z-direction).

Under these conditions we are interested in the development and properties of

a momentum boundary layer, characterized by a thickness 69 and a thermal

boundary layer characterized by a thickness t2 .

4.. .. - i
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It is apparemt that solution of the genera- problem described above
is going to require a theory incorporating some broadly applicable hypotheses -

about the turbulent t'ranspert machanisms. The number of independent variables.,
and the infinite possibilities for varying boundary conditions, make it
impractical to0 consider the totally experimental approach wherein experimental
data are generalized by dimensional analysis and then applied directly to
particular problems. This raises t,-he question as to what kinds of experiments-
should be carried out to provide the experip.-ntal bas;is for a qenleral theary.
What are the miore fundaen~rtal cases that should be tested ft provide firm~-
bench-marks and from which the various constants and f~v'-tsoos nelzess~ary to

amnore genieral Itheory can be derived? What are some critical experimen~ts -

that should be carried out tco provide a severe test of a general -theory?
Experience with tlie laminar boutpdaty layer, which can of' ccurse be

completely handled analytically, has pointed the way to certain fuhdanental
cases that also arise with turbulent boundary layers. Certain parameters
can be maintained constant, which makes it easier to derive the Critical1 coo-
stants and to determine their functtionei dspendence. In laminar- boundary
layer theory the concept of velocity profile similarity leads to a very con-
siderable mathematical simplification, and to a whole family of simple solu-
tions for some particular cases of transpiration and free-stream velocity
variation. Clauser (1954) demonstrated that for a turbulent boundary laye-
without transpiration a famidly of "equilibrium" boundary layers exist which
have partial velocity profile sitnilarity, and Bradshaw (1967) demonstrated
that e~ssentially the same free-stream velocity variation that yields the
laminar boundary layer "'similarity" solutions also leads to "equi'ibrium"
boundary layers in the turbulent case. Anderson (1972) has shown that
essentially the same situation exists for transpired turbulent bounidary
layers. Thus the family of "equilibrium" transpired turbu'lent bou~ndary
layers appears to provide a fundameital set, and will be used in this paper
for the main presentation of experimental data. The cons~tants and functions
for use in a more general theory will be derived from these "equ-ilibrium"
experiments. Then, to provide some severe tests of general theories, a
small amount of data for "non-P.quilibrium" cases will be pres~ented.

In the section immnediately following, the concept of the "equilibrium"
boundary layer will be discussed more precisely. The available experimental
data for "equilibrium" transpired bour~dary layers will then be presented in

5



three grjuns, starting with the case of a constant free-stream velocity,

then the case of an accelerating free-stream velocity (favorable pressure

gradient), and finally the case of decelerating free-stream velocity (advey'5e

pressure gradient).
After presentation of some data on "non-equilibrium" flows, mathematical

models for both the momentup. and energy equations will be discussed, and the
appropriate constants and functions derived from the "equilibrium" experiwer,*s

will be presented. Finally some examples of predictions based o '-his

partihular theory will be presented.

As a final word of introduction, it should be pointed out that although
the primary subject-3f this paper is the turbulent boun'dary layer with trails"-i

piration, the case of the impermeable wall, i.e., non-transpiration, is a

valid menber of the family of flows considered. The data presented for this V

case, which of course has been extensively studied by many workers over the

years, was obtained in the authors' laboratory. However, in all essentials

it is virtually identical to that reported by most other workers, and thus

can probably be considered as definitive.

15.

- t.
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EQUILIBRIUM4 BQUUDARY LAYERS

The motivation which has guided the choice of parameters for the so-

3 Lcalled equilibrium turbulent boundary layers has its roots in the similarity

variables of laminar boundary layer theory. In laminar boundary layers,
3 fixing the value of an appropriate ratio of boundary conditions allows the

reductian of the partial differential equation to an ordinary one for some
flow conditions, and permits a relatively simiple, mathematical solution.

The resulting velocity and temperature profiles are exactly self-similar,
and there is no uncertainty as to the efficacy of the parameters chosen:

-- the results speak for themselves. No such drastic benefit is realized in
turbulent studies. Combinations of boundary conditions can be proposed as

1 /•being likely to lead to self-similar behavior of the boundary layer, but
the profiles must be found experimentally and they are not usually exactly
self-similar, only approximately so. Turbulent boundary layers driven by
these carefully chosen combinations of boundary conditions are known as

"equilibrium" or "asymptotic" boundary layers: not truly similar, but
closely ;o. .

The best-known class of flows leading to laminar similarity solutionsI
- • is the Falkner-Skan family, which results when the free-stream velocity,

, varies as xm (m positive or negative) and vo varies in a related

I _•anrner, i.e.,

•] I and
an d U (cf/2) (2)

It is pdrticularly important to note that similarity is not obtained in

I general when is a constant, independent of x . The special case of
vo = 0.0 and U, a constant does yield similarity in velocity profiles,

Sbut, in general, a constant value of v. is an "arbitrary" variation of
blowing a5 far as similarity is concerned. Note further that similarity

is achieved only if vol/(U0 cf/2) is a constint with respect to Y'

' This dimensionless group is usually cilled the "blowing parameters", and

will be termed B . Thus,

17-1!.
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B p0 .0  (3)
M P.,,Q.(cf/2) - f~7

The physical significance of holding Bm constant can be appreciated

if it is observed that B can be rearranged to display:

| ~(poVo)U

B A (4)m T

In this form it can be seen that Bm is the ratio of the transpired

momentum deficit to the surface shear force. When these are kept in a

fixed ratio along a surface, then the laminar boundary layer develops in

such a way as to produce similar velocity profiles. It seems likely that

this ratio would also be important in turbulent boundary layers.

The energy equation can also be cast in such form as to reveal its

similarity variables. Similar temperature profiles result when, in a laminar

boundary layer having hydrodynamic similarity, the wall and free-stream tem-

peratures are constant and the "heat transfer blowing parameter" Bm is

held fixed. This parameter reflects the ratio of the transpired energy

Sdeficit to the surface heat transfer and is defined by:

P 0 Vo0  = "/Gc rii"c(t -to)

Bh A - S St = , (5)
Pw~wSt S

"0

The blowing parameter B and the heat transfer blowing parameterS~m
Bh both arise in the reduction of the partial differential equations of

the laminar boundary layer to the ordinary differential equation of the

similarity situation. Both, however, are also visible in the integral

equations of the boundary layer: a form which applies also to turbulent

boundary layers.

The condition of Eq. (1) can be shown to result in a pressure gradient

parameter, B , which remains constant when m, is constant. The parameter

B is defined as follows:

8



0 (6)
i T oT dxl 1 6

: may be interpreted as the ratio of the axial pressure force acting on
"the boundary layer to the shear force at the wall. Thus 8 and B should

m
have similar influences upon the development of the momentum boundary layer,

and indeed if one examines the following form of the momentum integral equa-

-tion of the boundary layer, this is seen to be the case:
d(U 62) Ico

d ) = (I + ( B + ) (7)

dx p~/m

Equation (7) expresses the rate of growth of the momentum deficit of the

boundary layer. If Bm and a are held constant along a surface, it is

not surprising that the boundary layer maintains a siatilarity of structure

as it develops.

The energy integral equation can be manipulated in such a way as to

show the importance of Bh

d2 o (I + Bh) (8)

Go

Equation (8) expresses the rate of growth of the axially flowing energy

flux in the thermal boundary layer, and Bh is seen to have the same in-

fluence on the thermal boundary layer as Bm has on the momentum boundary

layer. However, note that the pressure gradient parameter a has no direct

effect on the thermal boundary layer.

Let us now turn to the turbulent boundary layer. It would be convenient
to be able to define some kind of similarity that would lead to a classifi-

ablc group of flows. The problem is not quite so straightforward as for
laminar boundary layers, because with turbulent boundary layers there are

two distinct regions to consider: the inner and the outer regions behave
differently. It is possible to have inner region similarity independent of

the outer part of the boundary layer, though this latter may comprise most

of the boundary layer thickness. The existence of a local "law-of-the-wall"

which seems to hold under many conditioi-s regardless of upstream history is
witness to this fact. Put another way, we have been discussing some condi-

V 9



tions of ratios of forces acting on the boundary layer that lead to similar

structure in laminar boundary layers. With the turbulent boundary layer it

is possible for the inner region, near the wall, to be in equilibrium while

the outer region continues to develop. This inner region equilibrium appears

to be associated with an equality 'Jetween the rate of production of turbulent

energy and the rate of dissipation of turbulent energy.

Clauser (1954) proposed that boundary layers having outer region similar-
ity be called equilibrium boundary layers, and that an equilibrium boundary

layer be one for which the outer region velocity profile, plotted in velocity-

defect co-ordinates was universal. This condition can be expressed by:

U-U

U = f(3) only (9)

wee (U-UO)
where 6 3 U dy (0)

Clauser also proposed a shape factor, G that would be a constant,

independent of x , under these conditions:

G L J( dy (11)

0

Experimentally, it has been found that if 0 is held constant,

G remains constant. Similarly, it has been found that holding Bm con-

stant also yields constant G profiles. More recently it has been shown

-(Andersen, 1972) that if (Bm + 0) is maintained constant, G will be

constant. Thus it appears that the same relationship among the forces

acting on the boundary layer that yields similarity solutions for laminar
boundary layers yields equilibrium boundary layers, in the Clauser sense,

for turbulent boundary layers.

It is not surprising that the experimental condition leading to the

constant 0 (and thus constant G ) boundary layers is, again,

10
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m (12)

If there is transpiration in addition, Bm must be constant in order to

yield constant G , and this requires that

v 0 Uo(cf/2) (13)

which may readily be show. to reduce, to a good approximation, to

Sv° a x F(14)

where mF -n- 0.2 if cf/2 Rex2

Figure 2 shows an example of a series of velocity-defect profiles

for a blown adverse pressure gradient equilibrium boundary layer for

which B , G , , m , and m are all constant. Figure 3 shows the.n
additive character of B and 6 for 18 equilibrium boundary conditions.

A rather special case of equilibrium turbulent boundary layers occurs

in accelerating flows where the acceleration parameter, K , is maintained

constant.
dU

K A dU (15)U2 dx
CUcx

The significance of constant K can oe appreciated if the momentum

integral equation of the boundary layer is written in the following form:

dRe
Fm cf2 + V /U. - K(l + H)Rem (16)

If K and v/U are maintained constant, independent of x , and

if K is finite and positive, the flow must inevitably approach a state of

equilibrium for which Rem is constant. This is often spoken of as an

I asymptotic-accelerating flow; a special case of an equilibrium boundary
layer in which there is not only outer region similarity (constant G ),

11
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but also inner region similarity. The velocity profiles are similar all the

way to the wall, with the result that not only is Rem constant, but so

also are cf/ 2  and the shape factor 14 . Thus, constant K and constant

v /U. together yield a family of similarity solutions for laminar boundary
0

layers and a family of asymptotic-accelerating layers for the turbulent

case. An interesting feature of Eq. (16) is the fact that for each positive ]
value of K and each value of F there exists a definite value of Re:

as K increases, Rem decreases. Experiments indicate that it is impossible Li
to maintain a turbulent boundary layer if Rem is below about 300. The

corresponding value for K is about 3 x 10ý . In other words, if K is rj

of the order of 3 x 106, or greater, the turbulent boundary layer will

tend to revert to a laminar boundary layer. Evidence of this trend will

be demonstrated in some of the experimental data to be presented.

If K is negative (i.e., a decelerating flow), no such asymptotic

equilibrium can exist (except as discussed below). Note also that for a I
given value of K the rate of transpiration, whethey positive or negative,

will have a substantial influence on the asymptotic value of Rem .

Another related type of asymptotic flow can be re-ngnized in Eq. (16).

-If vo/U• is negative, Rem will approach a constant when K is zero or

negative, so long as the vo/U term is larger in the absolute sense than

the last term. This type of boundary layer is frequently referred to as the
"asymptotic suction layer", and may be either laminar or turbulent, depending

upon the magnitude of Rem at the asymptotic condition. Note that for

K = 0.0 , cf/ 2 approaches arl asymptote, -vo/Um . Physically, the surface

shear force is then precisely equal to the loss of momentum of the fluid

that is brought from the free-stream to zero velocity at the surface. This -

represents a lower limit on cf/2

The energy integral equation of the boundary layer can be put in a form

similar to that of Eq. (16), for the case of constant surface and free-streamri
temperatures.

= St + vo/U 
(17)

The important difference is that there is no term corresponding to the accel-

eration term (or pressure gradient term). Thus if K is a positive constant,

the momentum boundary layer will come to equilibrium, with Rem constant,
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but the thermal boundary layer will continue to grow. In fact if K is

maintained constant for sufficient distance the thermOa boundary layer will

grow outside of the momentum boundary layer as Reh increases indefinitely.

As Eq. (17) suggests, an asymptotic thermal boundary layer exists in

the case of negative vo/U• : an "asymptotic-suction-layer" similar to the

momentum boundary layer case.

The general question of equilibrium turbulent thermal boundary layers,

i.e., thermal boundary layers having outer region temperature profile
similarity, has not, so far as the authors are aware, been systematically

explored, although Blackwell (1972) has studied adverse pressure gradient

equilibrium boundary layers with constant surface temperature. If surface

temperature is allowed to vary, additional possibilities for similarity
arise. In order to restrict this paper to a few classifiable types of

boundary layers, consideration will be restricted to thermal boundary layers

on constant temperature surfaces, with a constant temperature free-stream.
There is no question that the turbulent thermal boundary layer which

forms on a constant temperature surface when the free-stream velocity is

constant does have outer region similarity. There is also a fixed ratio

(for a given Prandtl number) of enthalpy thickness Reynolds number to mo-

mentum tihickness Reynolds number. Even when the boundary layer starts

with widely differing enthalpy and momentum thickness Reynolds numbers,

this ratio of sizes will be approached at points dowthstream.

When there is blowing or suction with constant free-stream velocity,

and the blowing parameter B is maintained constant, it is observed

experimentally that Bh will also approach a constant. The thermal
boundary layer will approach an equilibrium state with a fixed ratio of

enthalpy to momentum Reynolds numbers, regardless of the starting conditions.

Blackwell (1972) observed the same situation for an adverse pressure

gradient flow for which B was held constant. Examination of the integral

equations, (7) and (8), might suggest that analogous behavior-for both

boundary layers would be unlikely when there is a pressure gradient, because
0 appears in only one of the equations. However, the adverse pressure

gradient is accompanied by a decrease in the surface shear stress (and in

cf/2), but no significant change in heat flux (and St ), with the result

13
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that the rate of growth of both boundary layers becomes the same. A similar

conclusion results from examination of Eqs. (16) and (17). For an equilibrium,

or constant a , boundary layer, the final term in Eq. (16) tends to vary with

x at the same rate as does cf/ 2 , and St in Eq. (17) also varies at the

-sawe rate.
The equilibrium thermal boundary layer cin be defined in an analogous

manner to the equilibrium momentum boundary layer, i.e., a thermal boundary

layer having outer region temperature profile similarity. Following the

form of Equations (9 and 10), temperature defect coordinates are defined,

y + (t°'ýt) (C- 128
+ ~0 d~ fI ~ (\1td = tw-to St ----- 3

3)F

where

00

A3= 12 ~(1t dy (19)• A~~3 = St (too-t., yIg

f 0
0

Figure 4 shows three temperature profiles plotted in these coordinates

for an adverse pressure gradient momentum boundary layer having velocity-
defect similarity. i.e., an equilibrium momentum boundary layer. Note that

the temperature profiles are universal everywhere outside of the sublayer.
Thus a constant G , , m equilibrium momentum boundary layer will also

yield an equilibrium thermal boundary Tayer when surface temperature is
constant. The same thing is true if there is transpiration with Bm con-

stant. Bh will become constant and similar temperature profiles result.
This behavior might also be anticipated from experience with the

laminar boundary layer similarity solutions. Recall that the condition of

Eq. (1) leads to laminar similarity solutibns for the thermal boundary
layer, so it is not surprising that this condition leads also to equilibrium

turbulent thermal boundary layers.

In summary, equilibrium turbulent momentum boundary layers, having

outer region velocity profile simiiarity, can be achieved by holding con-

14



stant the pressure gradient parameter, R , and the blowing parameter, Bm

Experimentally, these conditions can be established by adjusting free-

*I stream velocity, U• , and transpiration velocity, vo , according to the

condition of Eqs. (1) and (2).
A special case of momentum boundary layer equilibrium is approached

for accelerating flows when the acceleration parameter, K , is maintained

finite and positive. For this special case the velocity profiles possess

both inner and outer similarity.

Equilibrium thermal boundary layers are obtained, if surface and free-

stream temperature are maintained constant, under the same conditions lead-

ing to equilibrium momentum boundary layers,1

The special case of a constant acceleration parameter, K , does not

result in an equilibrium thermal boundary.

15
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1 
EXPERIMENTAL RESULTS

The objective of this section is to illustrate the hydrodynamic and

heat transfer behavior of equilibrium and near-equilibrium turbulent

boundary layers subject to blowing and suction, acceleration and decelera- ,----- -

tion of the free stream. These are the cases used to generate the dif-

ferential correlations used in the mathematical model described in the later

portions of this paper. They show the principal physical responses uf the

boundary layer and serve to illustrate the complexity of the prediction

problem. No attempt has been made to present a complete survey of the avail-

able data. The reader interested in the complete data sets should acquire

the referenced theses, which contain full, tabular, data sets. The objective

here is simply to provide-.the reader with insight into the nature of the.

physical response of the boundary layer.

The Stanford experimental results all derive from the same basic ap-

paratus, described by Moffat (1967), modified by subsequent authors to per-

mit studies of accelerating and decelerating -flows.

The apparatus is an open circuit wind-tunnel whose test section is 8

feet long, 20 inches wide and approximately 6 inches high at the inlet end-

The lower surface of the test section is the porous working plate-while the

top is a control surface and can be adjusted to vary the free stream velocity

in the streamwise direction. The porous plate is Gubdivided into 24 strips

each 4.0 inches long in the flow direction and each provided with a transpira-

tion flow,1 eter a set of imbedded electric heaters,.and temperature measuring

instrumentation. Heat transfer rate is deduced from the measured electrical

power by energy balance, accounting for the heat losses from the porous strip
to its surroundings by conduction ,nd .radlation. All tests were conducted

with air as the transpired fluid as well as the main stream fluid, and with

small temperature differences (approximately 250F) •to minimize the effects

of properties variation through the boundary layer.

The porous plates are known to be uniform within +6% in permeability

in the center 6-inch span, where the data are taken. The plates were custom

made by sintering bronze particles together in a polished stainless steel

mold cavity. The particles ranged in size from 0.002 to 0.005 inches in

diameter. The fabrication technique resulted in a porous material whose

surface feels smooth to the touch and which displays a roughness of 250

16
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micro-inch2s on a standard Surfa-gage test. The plates were installed with

an inlulating spacer of 0.020 thickness between adjacent plates, with the

joints finished by hand until they were not discernible to the touch.

Wall temperatures were held uniform to within +0.5°F in cases reported

as constant wall temperature" to reduce conduction transfer between plates. P
"Main stream velocity was shown to be uniform in the span-wise direction

within +.4% with the free stream turbulence intensity being about 1/2%.

Span-wise tests of the boundary layer development show the momentum thick-

ness to be uniform within +2% across the measuring portion of the tunnel.

Three-dimensional effects on the heat transfer measurements were investi-
gated by comparing boundary layer profile integrals with heat transfer

integrals along the pldte. Simpson (1967) concluded that the 3-D effect

a s not larger than 3%. It follows from the similarity between the energy

and momentum equations that three-dimensional effects on skin friction

data should be of the same order of magnitude.

Statements regarding the "relative uncertainty" of Stanton number have

'little meaning since blowing tends to force the Stanton number to zero.

Absolute uncertainties have more meaning, and will be referred to here.
The stochastic component of uncertainty in reported values of Stanton num-

ber is about +-O.O001 Stanton number unit. This value was estimated by

applying cons'ant probability propagation of uncertainty to the data re-

duction program using standard uncertainty values for the input measurements.

Values of the skin friction coefficient are more difficult to measure than

heat transfer and tend to be less certain. In addition, the skin friction

data tend to be sparse (for example, the Stanford results present only 4 or

5 values of skin friction per situation whereas 24 values of Stanton number

are presented), and therefore admit of larger differences in opinion in

interpretation. Thus, although the stochastic component of uncertainty in

each measurement may be +5%, there may be differences in interpretation of

the same data by different investigators due to differences in curve-fitting

coordinates etc. which are as large as 10% or 15% (see Squire, 1970).

The Experimental Boundary Conditions

The overall program from which the present examples of data were taken

covered accelerating and decelerating flows as well as variations in wall
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A t~nperature and blowing. This- range precluded the use of x-Reynolds number

as a useful correlating parameter and -lead early to the use of the local

boundary thickness Reynolds number' (either momrentum- or ernthalpy-thickwbss)
for presentation of the results. It-was shown, by the Etudy of It'bitter

-(1967), that for uniform free stream velhcity, the boundary layer would ad-

just to even a'step change- in blowing within-2-5 boundary-layer thicknesses.

It can be seen by comparing his-data with those-of Moffat (1-967), that viii- i

formnbl-owing (constant F flows) produced the same value of.Stanton number

for a given enthalpy thickness Reynolds nuiiter as did comIstant D3 fl1ows.A

With the validity of "local equilibrium" established tiW-at least th'is ex- -

tent, it was possible to conduct the remaining experim~ents with the simpler

(experimentally) boundary condition of constant T. rather than, the true

equi Ii bri um si tuati on-of 'tOnstant B It i s bel ieved that ny effects of

this -simplificati-on will1 be foun~d only in the velocity and temperature pro-

*files, and then only ½n the outerrmost parts (i.e., the wake region), since

the inner region responds s0 rapidly to the wall conditions.

AcceleratioriL were characterized by a-constant- value of K defined

dU
a s 72 Such a flow is Of-fundamental value, as shown earlier, an~a* u~~dx -

also has the merit of being easy to establish sirce it naturally occurs in

the case of a channel formed between~ two conv-erging planies (except for second

order effects due to the growth of the displacement thickncsses)-.-. It was

hypothesized, at first, and then confirmed experimehtally, thatt the -asymptot~ic

state would result in a constant vatbie of 'Cf! 2 . This has the effect ýthat

constant F is also constant B hence, although the- experineri-t was set up-_,
as constant F , it resulted in a completely equilibrium situation with
both K and B reasonably well fixed in the accelerating region.

The decelerating flows were set to nearly constant 63 pressure gradients

by fixing U,,, = Ul with m negative and x determined with respect to
the virtual origin. Blowing was set by specifying constant F ,relyitig upon

the trend towards local equilibrium. The results showed no discernible ef-

fect of deceleration upon the relationship between Stantiin number and en-

thalpy thickness Reynolds number: the same-correlations which worked for

the flat pl ate case works for constant decelerations. Hence, it seems
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safe to assume that the local relationship determined by an experiment at

constant F is the same relationship which would have been found in a con-

stant B experiment.

Constant wall temaperature was used throughout the base-line tests re-

ported here, with an average temperature difference of about 25*F between
-the free stream and the wall. No correction has been made for the effect

of variable fluid properties except to the initial "qualification runs"

wich validated -the apparatus in the flat plate, no-hiowing test rase.

Sureo tests have been made to document the response of the boundary layer

to steps and-ramps in teimperature and to arbitrary distributions of blowing:

these serve as check-runs, against which one can test models of boundary

layer behavior based upon the differential and integral correlations de-

rived Iftom te: equ ll rium experi.ments.

Corelations of Results

.The prlncipal correlations deduced from tke present data set are the

differential ones: the correlations used to model the momentum mixing

length and the turbulent Prandtl number in the finite difference computing

V7thod described in the latter part of this paper. There is, however, use

for integral correlations such as "Stanton number as a function of enthalpy

thickness Reynolds number, F , and K or a" . The range of validity of

such integral correlations is necessarily less than that of the differential

correlations, since the latter have the differential equation to help cope

with the changing boundary conditions. Within their limited range, and

accuracy, however, such correlations are extremely useful, particularly

when kept to simple functional forms..
The results of the present data set are, therefore, presented in both

ways: integral and differential correlations. Discussion of the dif-

ferential correlations is collected in the last two sections. The integral

correlations are discussed with the data since they help-to clarify the

organization of the results.

Heat Transfer Results for U = Constant

The principal effects of transpiration on heat transfer thru a constant

velocity boundary layer are shown in Figures 5 thru 7.
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Figure 5 shows Stanton number as a function of x-Reynolds-number for

I uniform blowing and suction. The blowing fraction, F = di"/G , is the

ratio of the mass velocity through the surface (di") to the free-stream mass

velocity (G). It is apparent that blowing (iI"/G. > 0) and suction

O(V"/GC < 0) both have large effects: blowing tends to drive the Stanton

number towards zero as the blowing fraction increases whereas suction tends

to force the Stanton number to an asymptotic value numerically equal to (-F).

"This behavior is illustrated in Figure 6, which shows St as a function of

'nt"/G parametric in x-Reynolds number. The region of boundary layer behavior

is thus seen to lie between W"/G of roughly F = +0.01 for this range of

Reynolds numbers.

It is worth noting that all of the features shown in Figures 5 thru 7

can be recovered, with good accuracy, from a finite difference program using

a damped mixing-length closure: the damping needs only to be made a function

of the transpiration rate - no other change need be made. The evidence is

that the main effects of blowing are confined to the inner portion of the

momentum boundary layer: blowing changes the shear stress distribution and

reduces the effect of the sublayer. The diminished influence of the sub-

layer can be simulated by making the damping factor, A , smaller as the

blowing fraction increases, producing velocity profiles which closely re-

semble those shown in Figure 13. Experiments show that the turbulent

Prandtl number is not much affected by blowing, and the A+ variation alone

results in satisfactory prediction of the principal features of the heat

transfer. This point is developed in the third section of this paper, and

an empirical correlation is presented for A+ as a function of the blowing

and the pressure gradient conditions. Correlations of this sort, for use

with finite difference programs, are described as 'differential correlations"

to distinguish them from the more conventional "output oriented" correla-

tion.

Within the range of values covered by the present data set, the effect

of blowing can also be described by a correlation in Stanton number co-

ordinates.

The data show that the ratio of Stanton number with blowing, St , to

Stanton number without blowing, St0 , is a unique function of the blowing

parameter B . The comparison can be made at the same x-location (same Re x)

as given by Equations (20) and (21):

20



(I~ +

St 0n() + Bh) ()

0
S 0 Rel

or, equivalently,

St b (21)
to eb-

Rex

where B (22)

and b = (23)
00

Equations (20) and (21) were presented during the early 1950's by

several workers in the field as "stagnant film theory" or "Couette flow"
models. The agreement between the data and Eq. (20) is shown in Figure 7.

In part, the good agreement results from the implicit nature of Eq. 20
diminishing St reduces both St/St and Ln(l + Bh)/B, hence preserving

"good agreement".
As mentioned earlier, the objective of the overall research program

suggested an early search for local descriptors of boundary layer behavior.

In particular, emphasis was focused upon the relationship between Stanton
number and enthalpy thickness Reynolds number. It was natural, then, to
seek a way of predicting the effect of blowing in local coordinates; i.e.,

St/St0 at constant enthalpy thickness Reynolds number.
The data of Figure 5 have been re-cast to show Stanton number versus

enthalpy thickness Reynolds number and plotted as Figure 8. Values of

enthalpy thickness for this plot were calculated from the measured Stanton
number data and the blowing fraction by integrating the two-dimensional

energy integral equation but values derived by this method agree well (5-
6%) with values deduced by traversing the boundary layers. An empirical

form could be deduced from this figure but a better guide is at hand.
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Whitten (1967) showed that Eq. (20) could be conmbined with the two-dimensional

energy integral equation and with an equation describing the variation of St0

with Re to yield the following form:
x

St Reh [nl Bh) 1.2 Bh)' (24)
St~ (I1+ Bh(4

Equation (24) was developed from Eq. (20), hence all of the data for

U00 constant fit Eq. (24). Implicit in Eq. (24) is the notion of local

equilibrium: it is presumed that knowledge of Reh and B will fix

St/Sto , regardless of the upstream history. The validity of this hypothesis

was tested by experiments in the vicinity of a step change in blowing. Such

data are shown in Figure 9. The boundary layer is seen to respond very

rapidly to the step, with Stanton number dropping almost all the way from

the unblown value to the uniformly blown value within one plate width (4
inches in the flow direction). The boundary layer thickness at the point

of the step (99% velocity thickness) was approximately one inch hence the

local equilibrium is re-established in about four boundary layer thicknesses.
Thus, Figure 9 shows a strong "local equilibrium" tendency, favoring the

use of Eq. (24) for cases of variable biowing as well as cases of uniform

blowing and opening the door for substantially local predictions of the

boundary layer behavior. An example of a more complex case is shown in

Figure 10, in which a linearly decreasing blowing, F = 5 x 10 5 (x) , was

combined with a shar'ply variable wall temperature. Whitten (1967) predicted

the outcome using local equilibrium in combination with a superposition

method.

Skin Friction Results for U Constant

The principal effects of transpiration on the skin friction coefficient

of a turbulent boundary layer are illu.,trited in Figures 11 and 12. Figure
11 shows the early results of Simpson (1967), derived from pitot probe

surveys of the bounlary layer. Figure 12, in Rem coordinates, includes

later results of Andersen 01972) for comparison. As can be seen, there

are considerable differences in the results. Our present opinion is that
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the values near the bottom of each band are-more representative than those
near the top. Andersen's data were taken with a rotatable, slanted, hot wire

probe measuring turbulent sher stress near the wall and extrapolating to

the wall using a partially integrated form of the boundary layer momentum

integral equation. His data are less sensitive to interpretive differences

than were Simpson's, who determined cf/ 2 by differentiating a curve fit

thru measured values of momentum thickness. Squire (1970), previously

mentioned, pointed out that Simpson's momentum thickness data could be inter-

preted to show different values of cf/ 2 , by 10% or more, simply by choosing

different coordinates in which to curve fit the momentum thickness variation.

The variation of cf/ 2 with blowing is essentially the same as that

of Stanton number: the ratio cf/cf0 can be calculated from the blowing

parameter Bm where the subscript signifies B defined with cf/ 2  instead

of st

cf X= n(l + Bm)
cf I [ j (1 25ci B (1+ B • (26)

0 Rem L

whr M F (27)
where Bm = c(2)f/

It is presumed, based on the strongly local behavior of St , that skin

friction would be similarly quick to respond to a step in blowing.

Velocity and Temperature Profiles

Velocity and temperature profiles in inner coordinates are shown in

Figures 13 and 14 for the case of constant velocity (about 40 fps), constant

wall temperature (AT about 250F), injection of air into air. The general+÷ +

features of the region from y = 10 to y -100 can be deduced from a
Couette flow analysis using a mixing length model assuming no effect of

blowing on the mixing length distribution. Such an analysis leads to a

23



closed form "Law of the Wall" representation for the fully turbulent recAion
Analyses of this sort have been presented by Black and Sdrnecki (1965),
Stevenson (1963), Simpson (1967), and others. Thus the drainatic "uplifting"
in the outer regions reflects mainly the effect of the transpiration flow

on the shear stress distribution in the layer - not a drastic change in the
mechanism of momentum transfer.

Figure 13 shows data from two programs (Simpson and Andersen) which used

different methods of evaluating the friction factor (used in both the u+
+

and the y coordinate definition). The difference shown is, again, due
to the difference in reported values of the friction factor. Our present

opinion favors values near the high sides of the bands shown, rather than
the low side.

+
Data inside of y = 10 are suspect because of the possibility of

probe errors due to wall displacement effects and shear effects. No definitive

studies have been made concerning probe corrections in the presence of tran-
spiration, hence no corrections were made to these data. To some extent,
the situation is ameliorated by the fact that the finite difference program+ = +

is only required to "bridge the gap" between y =0 (u+ =0) andy =10
(u+ known) by some reasonable means to get into a region of reasonably well

known behavior.

Relatively little has been done in terms of measuring the temperature
distributions in turbulent boundary layers with transpiration. Figure 14

shows some results of Moffat (1967), Blackwell (1972), Thielbahr (1969), and
Kearney (1970) for some cases of blowing and suction. The parameter t+ is

defined as follows:

t t+ 0  T St (28)

Note that t+ includes cf/ 2  as well as St in its definition, hence

is sensitive to the hydrodynamics as well as the heat transfer. This form

follows from a Couette analysis in which the terms are made dimensionless
using u . The fact that t includes both cf/2 and St means that
t+ profiles have inherently more scatter than u+ profiles. In fact if

one examines Eq. (28) in terms of an uncertainty analysis on a simple product
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form, at any value of y , the value of t+ includes an uncertainty com-

ponent due to E, a component due to , and one due to St . If St

is uncertain within +5%, and cf/ 2  is uncertain within 10%, and T within

2%, then

t+ (()2())

we have

6(t)= {.0004 + .0025 + .0025}1/2 = 0.073 (30)
)• t+

In the cases with high blowing, 6(St) and S(cf/2) remain relatively fixed

(or perhaps even become larger) while the values of St and cf/ 2 approach

zero, yielding large percent-wise inaccuracies in St and cf/ 2 . These

are propagated immediately into t

In short, one should be more cautious in attributing significance to
the details of ts variations than to u n variations, because of the added

uncertainty involved. Since the major uncertainties involved appear in

multiplicative terms, the slopes of the t+ - y figures are affected when

shown in the conventional semi-log coordinates.

When air is the working fluid and the transpired fluid the values of

Prandtl number and turbulent Prandtl number are both near unity. It would

be expected as a consequence, that • and "f would be similarly distributed
within the boundary layer in a constant velocity flow. This is the case,

as a review of the data of Moffat (1967) or Whitten (1967) will show. In+

view of this, it is reasonable to expect t÷ to vary like u within the

layer. ÷

If, at every y +

u t-to

25 tt° (31)
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with + and t (32)

SThen t+ _. u+(cf/2(The u St(33)

Thus, for the case of constant free stream velocity, we should not find

great differences in the profiles, in these coordinates.

Flows Subject to Acceleration -

Early in the 1960's it was observed by several studies that the Stanton
number was dramatically reduced by a strong acceleration. The relationship
between Stanton number and enthalpy thickness Reynolds number strongly re-

sembled the behavior expected of a laminar boundary layer. As a result of
this similarity the phenomenon was labelled "re-laminarization" and occupied

a number of workers throughout the late 60's and early 70's. There was gen-

eral agreement that a suitable acceleration parameter could be taken as

K ()dU

U0

though some felt that a better form would include cf/ 2  to some power in
the denominator. We used K , given by Eq. (34), as the acceleration
parameter. As h~s earlier been shown, constant K boundary layer flows

offer a possibility for asymptoti.c or equilibrium boundary layers. Such a
possibility is attractive, experimentally, on three counts: (1) it is
relatively easy to accomplish (a constant K flow can be achieved using con-

vergent planar walls) and, (2) it produces a possibly-simpler family of

responses by the boundary layer, with a better chance of revealing the
.,1iamental effects and (3) it helps resolve the dilemna of which possible

cases, out of the infinite number of possibilities, to choose. Evidence
of "local" behavior already mentioned, suggests that slowly varying K
conditions can be treated as quasi-equilibrium states.

Heat Transfer to an Accelerated Flow

Figures 15 thru 18 show the effects of acceleration on heat transfer

for values of K between 0.57 x l0"6 and 2.55 x l106 with transpiration
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controlled to yield constant F along the surface. The intention was to

achieve and hold the asymptotic accelerated state for as long as possible,

hence it was desired to start the acceleration at the particular value of

momentum thickness Reynolds number appropriate for the values of K and F

being used. The momentum integral equation was used as a guide to choosing

the starting value of momentum thickness Reynolds number. The validity of

this assumption and the accuracy of the "set point" can be judged from

Figure 21 which show that momentum thickness Reynolds number did, in fact,

remain substantially constant throughout the test section in a typical run.

In every case shown in Figures 15 thru 18 a flat plate, turbulent

boundary layer with uniform transpiration was established in the test section

and allowed to grow with length until the desired momentum thickness Reynolds
number was reached. At that location, the top wall of the test section was

adjusted to set in the convergence required to yield the desired value of
K . Total and static pressure measurements were made at four inches inter-

vals along the test section to check that K was, in fact, constant through-

out the test region.

It might have been argued that two effects were present in these tests:

(0) acceleration, and (2), high velocity flow. Flat plate tests were con-

ducted at velocities up to 126 fps to ensure that Stanton number remained
the same function of enthalpy thickness Reynolds number at the high velocity

end of the test section as at the low velocity end. At 126 fps the Stanton

number correlation was indistinguishable from its values at 40 fps, though
the friction factor was high by 5-7% (momentum thickness method). Thus it

is felt that there are no contaminating effects present: the changes in

Stanton number shown in these results are those due to the acceleration level,

not the velocity level.

Figures 15 thru 18 show Stanton number versus enthalpy thickness Reynolds

number for the different cases studied, compared with reference curves for

flat plate behavior. As a general comment, for a given enthalpy thickness

Reynolds number, acceleratior ombined with suction reduces Stanton number,

whi e acceleration combined with blowing increases Stanton number with re-

spect to the transpired flat plate correlation. To illustrate this trend,

note the progression of Stanton number behavior for F = -0.002 (moderate

suction) shown in the four figures. At K 0.57 x 10"6  the Stanton number
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slowly falls away from the flat plate result, being low by about 10% at the

end of the test section. At K = 0.77-x 10-6 the decline is more pronounced,

with the terminal value low by almost 20%. At K = 1.45 x 106 the drop is

nearly 40%, and the boundary layer seems to return only slowly to its flat

r plate behavior. For suction, the stronger the acceleration the greater the

depression of Stanton number.

With blowing at F = +0.004 , a more complex change in behavior is noted.

With K = 0.57 x 106 the Stanton number values rise above the flat plate

case by as much as 40% at the end of the acceleration, and at K = 0.77 x 10"6

the elevation has reached 66%. For larger values of K however, the be-

havior returns toward the flat plate correlation: at K 1.45 x 10-6 the

- elevation is only 35% and at K = 2.55 x 10-6 the data lie once more on the

flat plate correlation. A general trade-off can be inferred, between the re-
laminarizing effect of acceleration and an apparent destabilizing effect of

l • .blowing. For positive values of F and K , the neutral values seem to lie

along a line relating K and F such that if F exceeds 1.5 x 103K , the

value of Stanton number will be increased by the joint effect, and if F is
less than the neutral value, Stanton number will be reduced.

Figure 17 also shows data for a strong suction layer: F*t -0.004 (strong

suction) and K = 1.45 x 106 (moderate acceleration). The trajectory

"shows that an asymptotic suction layer was attained for these conditions, in

the presence of strong acceleration. The first few data points show Stanton

number diminishing from 0.005 to 0.0045, in the approach region, in a typical

turbulent suction layer fashion. The acceleration begins at an enthalpy

_ thickness Reynolds number of 400, and Stanton number immediately begins a

sharp drop. With suction at F = -0.004 , the condition of thermal equilib-

rium at the surface requires that the Stanton number be at least as large

as -F and the decline of Stanton number is stopped at that level. With
Stanton number numerically equal to -F , and a constant wall temperature,

the energy content of the boundary layer ceases to change. The increasing

"I values of U., with distance then slowly drop the value of enthalpy thick-

ness Reynolds number, and the data points more sequentially to the left, at

I constant Stanton number.
No attempt has been made to devise an empirical formulation for pre-

* I dicting Stanton number in terms of enthalpy thickness Reynolds number, K ,
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and F . Complex as it is seen to be in these figures, this is still only

part of the story. All of the data in these four figures are from asymptotic

accelerated flows, where the flow entered the accelerating region at, or
nearly at, the appropriate value of momentum thickness Reynolds number. As

will shortly be seen "overshot" or "undershot" layers, where the entering

values are either larger or smaller than the asymptotic values behave much

differently in the accelerating region.
Figures 19 and 20 illustrate the effects of inlet conditions on the

response of the boundary layer to a strong acceleration. I!-Figure 19, the

accelerations began at momentum and enthalpy thicknesses between 800 and

1000, with the high K runs beginning at the lower values. Luoking ahead

to Figure 22 shows these to be nearly the asymptotic values. The solid

symbols in Figure 19 show the behavior of the Stanton number within the

accelerated region, and display a regular progression of slopes. With these
curves as a baseline, a series of tests were run at a fixed value of

K = 2.55 x 10-6 varying the initial momentum and enthalpy thickness Reynolds

numbers. The results, in Figure 20, show that the slope of the Stanton number

correlation is not a unique function of K but depends upon the initialIb

conditions. In Figure 20, the square symbols represent a near-equilibrium

combination, with momentum thickness and enthalpy thickness Reynolds numbers

within 100 units of one another, and of the same approximate values as shown
in Figure 19. It is worth noting that if the enthalpy thickness is kept

small (in this case by delaying the heating) the response of the Stanton

number to the acceleration is diminished. On the other hand, if the en-

thalpy thickness is held nearly constant, and the momentum thickness in-

creased, there is relatively less change in behavior from the reference case.
When-both the enthalpy and momentum thicknesses are increased to large values

prior to the acceleration (an "overshot" case), then the Stanton number comes

down very abruptly in the accelerating region. For the strongly "overshot"

entrance conditions it is not possible to obtain a long run at equilibrium
conditions, hence most of the data shown are in the region where the bGundary

layer is still adjusting to the acceleration.

The solia line shown for comparison represents the similarity solution

for a laminar wedge flow witha th a relativermal boundary layer. It seems

clear, from these data, that the same relative variation of Stanton number
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could be attained by different non-equilibr-ium combinati-ors--.of enthalpy
thickness Reynolds number and acceleration. The effeLt: of a non-equilibrium

combination of momentum thickness and acceleration cannot be uniquely identi-
fied by the value of K alone. Heat transfer in non-equilibrium accelera-

tions is inherently responsive to all three variables: the acceleration

parameter, the momentum thickness, and the enthalpy thickness.
The combination of acceleration and blowing has been shown, by these

experiments, to be strongly non-linear in its effect on the boundary layer.

Empirical descriptions of this behavior are difficult to assemble in "output"

notation. To express Stanton number as a function of Reh , K and F in
* " such a way as to recover all of the aspects shown in Figures 15 thru 20 would

require a good deal of ingenuity. It is, however, relatively straightforward
to predict this data set using a modified damping factor in a mixing length

formulation. If the damping factor, A+, is expressed as a relatively simple
empirical function of F and K , the principal features of all the preceding [
data are recoverable within about 10%.

Momentum Transfer to an Accelerated Flow

The decision to test equilibrium accelerated flows places some con-

straints on the behavior of the momentum boundary layer as illustrated in
Figure 21. Here, for accelerations at a-value of K = 0.75 x 10'6, are

trajectories of the boundary layer behavior for different values of F

The broken lines suggest the behavior of the skin friction and momentum thick-

ness Reynolds number at various stations along the plate prior to the begin-
ning of the acceleration. The vertical bar shown for each set is the last

point in the unaccelerated flow. Considering the data for F = 0.006 , after
the acceleration begins, the momeentum thickness Reynolds number grows only

slightly, from 3000 to 3700, and does not change further with length along

the plate. At the same time, the value of the skin friction coefficient

rises quickly to a final value above the flat plate value and then remains

unchanged. The equilibrium point thus established is characteristic of this

combination of acceleration and blowing. In each of these data sets, the

acceleration was begun at or near the predicted value of the equilibrium

momentum thickness Reynolds number, to reduce the transient effects as much

as possible. The way in which the asymptotic values of momentum thickness
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Reynolds number vary with K and F is shown in Figure 22. Each symbol

shown represents an experimentally achieved equilibrium state. Asymptotic

values of cf/ 2 established by these equilibrium flows are shown in Figure

23. Again, each symbol represents an experimentally achieved equilibrium

"state. Soriie confusion existed in the data sets for K 2.5 x 10-6 and

F = 0 and four different terminal states were achieved. All are shown,

but symmetry with the other data sets suggests that the higher value be
" ~used.

The momentum boundary layer for an asymptotic accelerated flow has

thus a relatively simple description. Being uniquely specified by F and

K , there is no need for a "size dependence" and, in essence, the complexity

of description is reduced by one variable. The asymptotic value of friction

factor with blowing, can be predicted with reasonable-accuracy by applying
Eq. (26) to the unblown asymptotic value at the same K . Since F and K

uniquely determine the asymptotic thickness, (see Figure 21 or 22) there is
no need for a statement ".. at the same momentum thickness Reynolds number..."

and, in fact, such a proscription cannot be enforced in the context of com-

paring asymptotic boundary layers with the same value of K and different

values of F

Mean Velocity and Temperature Profiles in an Accelerating Flow

In a constant K , asymptotic boundary layer the momentum thickness
Reynolds number'seeks some characteristic level, as does the friction factor,

and the velocity profile assumes a stationary shape in u+ , y coordinates.
This is illustrated in Figures 24-A, 24-B, and 24-C which show the profiles

as they developed in the stre,&wise direction. For the two lower values
of K , the momentum thickness Reynolds number was a constant throughout

the length of the test section to within 10% and close to the asymptotic

values shown in Figure 22. The profiles show a close similarity in both

inner and outer regions. At K = 2.6 x 10 6 the boundary layer was
"overshot", entering with a momentum thickness Reynolds number of 750 com-

pared to the asymptotic value of 480 (from Figure 22). As can be seen,

the boundary layer did not reach an asymptotic state, though the last pro-

file (in the streamwise direction) could be taken as representative. The

corresponding temperature profiles are shown in Figures 25-A, 25-B, and
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25-C. For the two lower accelerations the temperature profiles remainI +reasonably similar, sh)wing small changes in the outer region (for y >

100) which can be seen to increase in magnitude as K increases. Reviewing

-Figures 15 and 17 shows that the Stanton number values for these conditions
were only slightly affected by the acceleration. When the value of K

reaches 2.5 x 10-6., however, as shown in Figure 25-C, the temperature pro-
file shows a drastic difference, with the profiles strongly non-similar in

the streamwise direction. The effect is felt all the way in to y near 10.

The Stanton number data in Figure 18 shows this combination of conditions to

result in a drop in Stanton number which reaches 40% at the downstream end of

the test section.
The "terminal states" of the velocity and temperature profiles are shown

for high and low accelerations (K = 0.57 x 1076 and 2.6 x 10-6) in Figures
26-A and 26-B and 27-A and 27-B for various v-4lues of blowing. The phrase

j, "terminal states" is used because, while the profiles shown for velocity are
representative asymptotic profiles, those shown for temperature are simply

the last measured profiles: the energy boundary layer continues to grow, a

longer test section would have yielded a different "last" profile.

i The temperature profiles shown for K = 2.6 x 10-6 display inner region
similarily, out to about y of 100; no such cohereac2 is visible in the

data for K = 0.57 x 10- 6

* IThe velocity and temperature profiles shown in Figures 24 thru 27 il-
lustrate the main structural features of the accelerated turbulent boundary

layer. These data have been used as guides in refining the physical models

used in the Stanford finite difference computer program for boundary layer

Icalculations. This work is described in a later section.

jI Flows Subject to Dec&Leration

Decelerating flows differ from accelerating flows in that no asymptotic

boundary layer state is approached, even though an equilibrium flow is

established. The condition of equilibrium between the pressure-gradient

force and the shear force is expressed by the parameter 6 given earl-_r
I - (Eq. 6 ) and it .has been. shown experimentally that boundary layers for which

Sis constant with length display a constant value of G , the Clauser shape
kfm•
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factor. An extension of this observation, based on the present data set, is
that G remains constant with length whenever (0 + BM) remains constant,

where Bm is the momentum blowing parameter.
The experimental boundary conditions which produce flows wijth constant

0 are those for which the free stream velocity varies with distance to some
power. "m". This introduces an experimental difficulty centering around the
identification oO the virtual origin of the boundary layer. It would not be

appropriate simply to measure 'x" from the leading edge of the test section
unless (a) the boundary layer were of zero thickness at that point and (b)

the boundary layer were fully turbulent from the leading edge onward. It is
an observation of the work reported by Andersen (1972) that when "x" distance
is measured from the virtual origin and velocity varies with sone power of
x , then equilibrium boundary layers are achieved: both 0 and G remain
substantially constant with length along the test section, after a brief
accoiwnodation. The decision was also made, in the Stanford program, to

restrict the study to flows which did not approach separation. For this rea-
son only small negative values of "m" were used. It was anticipated that
high blowing would tend to encourage separation, hence data were taken only

for cases of suction and small blowing.
Since no asymptotic state 's attained in a decelerating equilibrium

flow, the Stantoo number and friction factor values vary with ":',rdary layer
thickness Reynolds numbers and the data resemble the flat plate data in their

general dependences.

Heat Transfer in Decelerating Flows

Figures 28 and 29 show the variation of Stanton number with enthalpy

thickness Reynolds number for moderate and strong decelerations with blowing
and suction. The solid lines through the data represent flat plate behavior.
The sa•ne correlation applies to both cases of decelerated flow as applies for

the flat plate case. The effects of blowing are to reduce Stanton number
but, again, exactly as was observed for the flat plate case.

In terms of the surface heat transfer behavior of the boundary layer,
then, one can say that adverse pressure gradients pose no new problems,
within the range of conditions encountered in this study. Whatever effects
the adverse pressure gradient may have on the structure of the boundary
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layer, in terms-of changing the sublayer thickness or the turbulent transport.-
mechanisms, the net effect is the same as for a flat plate situation. What-
ever internal corre'ations are proposed to describe the effects of pressure

gradient on the boundary layer must, then produce this same behavior for

decelerating flows.

j The heat transfer characteristics for the decelerated flows reported

here can be described by

Sto = 0.015 Reh'0. 25  (35)

n ( 1+ 1.25
RSt L (1 + Bh) 2 5  (36)

S]~Reh

Here, Sto is defined as the value of Stanton number without blowing but

in the adverse pressure gradient, and St is the value of Stanton number

in that same adverse pressure gradient, with blowing, at the same enthalpy

thickness Reynolds number.

Momentum Transfer in Decelerating Flows

Although the heat transfer behavior in decelerating flows can be ade-
T quately described in terms of flat plate correlations, the momentum transfer

cannot. The effect of an adverse pressure gradient is to decelerate the fluid

in the boundary layer causing the momentum thickness to increase more rapidly
than it would due to wall shear alone. The variation of cf/ 2 with pressure -•

gradient is shown in Figure 30 and summarized by the following recommendations,
for flows in which U1 = U with "m" a constant.

I-.a = Rem- 25  (37)

I where

U = constant a 0.0120 (850 < Rem < 3000)

U u¶x a = 0.0102 (1500 < Rem < 3500) al

U 0 = UX 2 0  a = 0.0083 (1700 < Rem < 4200)

U = ulx" 2 7 5  a = 0.0059 (2000 < Rem < 5000)
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Near the entrance of the test section the values of G and 8 were usually
not stabilized, with 8 continuing to rise for the first two or three data

points to its final value. The forms of the curves therefore reflects this
accommodation: only the last six data points should be taken to represent i"

equilibrium conditions. The data for m = -0.275 shows much scatter: these
are difficult conditions under which to measure the friction factor. The
line shown passing through the data must be regarded as only a suggestion, at

best.
-Blowing increases the momentum deficit of the boundary layer and would

aggravate a tendency to separate due to an adverse pressure gradient, so
combinations of blowing with deceleration are prone to early separation.
For this reason, the blowing data shown on Figure 31 is restricted to a mod-
erate deceleration (m = -0.15) and moderate blowing. The data in Figure 31
include all recorded values within the region of constant ')m". In the en-
trance region the values of s and G were not usually stabilized, with

a continuing to rise for the first two or three data points. In this region
of increasing 8 , the value of cf/ 2  shows a rapid drop with Reynolds num-
ber. In the region where $ was substantially uniform, the variation of
c f/ 2 with Reynolds number is similar to that observed on a flat plate. In
particular, the relative effects of blowing on skin friction are similar to
those observed on a flat plate (though, of course, the unblown values are
much different) and are once again predicted well by:

cf e n(l + Bm B) 0.25=f-(Bm+(1 * (38) ,

-o Rem 
.

Swhere Bm is the momentum blowing parameter.

Velocity and Temperature Profiles for Decelerating Flows

Velocity and temperature profiles for moderate deceleration (m = -0.15)
are shown in Figures 32 and 33 in wall coordinates. The velocity profile is
relatively unaffected by the deceleration inside y of 200 either for
suction or for no blowing. Blowing at 0.004 has a very pronounced effect,

however, raising the values of u+ at every y+ greater than about 10.
The profiles of t+ are less affected by the deceleration than are the

+
profiles of u , being slightly lower across the board.
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I
'I Integral Relationships for Friction Factor, Stanton Number and Shape Factor

The preceding sections have discussed data for flat plate flows (U =

I constant), asymptotic accelerating flows (K = constant) and equilibrium

decelerdting flows (m = constant). For each of these hydrodynamic situations

5• data have been presented for different transpiration levels both positive

* (blowing) and negative (suction). In addition, one can envisage flows with

wall temperature variations such that the thermal anJ momentum boundary layers

might be of considerably different thicknesses, the number of combinations

of these boundary conditions is very large, and it would indeed be surprising

if any correlation could be contrived which would describe Stanton number or

friction behavior directly and which would cover more than a small range of

j these conditions with any accuracy. Generality of the sort needed for that

task seems inherently to require a differential predictor scheme with the

J experimental inputs providing information about the transport mechanisms

within the b,jundary layer. Such is the approacl, taken by most heat transfer

research today. The differential correlations needed to describe these ex-

I perimental data are discussed in the next section and their success in pre-

diction of complex combinations is shown in the last section.

1 For the present, however, it can be said that some correlations can be

given which are useful for situations not too far removed from the equilibrium

I states represented by these data. In particular, situations involving slowly

varying blowing, or slowly varying K or a even for a relatively large

I difference between the thermal and momentum boundary layer thicknesses.

Such correlations are shown in Figures 34 thru 36: Stanton number

versus enthalpy thickness, the effects of blowing, and the variation of

shape factor. In choosing the correlations conflicts had to be resolved

between the desire for accuracy and the desire for range. The correlations

1 shown are believed valid within +10% for the ranges of values covered.

Figure 34 shows Stanton number versus enthalpy thickness Reynolds number

j for a number of different cases, all with no trarispiration: flat plate,

moderate and strong accelerations, and moderate to strong decelerations.

I All of the data shown are from the present series, and represent equilibrium

states. It is noteworthy that a single correlation covers the data for all

flat plate flows, all decelerating flows, and all accelerating flows lessI6severe than K = 1.47 x 106. The recommended curve is:
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Sto = 0.015 Reh"0 "25  (AIR) (39)

150 < Reh < 6000

In recommending this particular form it must be admitted that certain
traditions have been honored. In particular, the use of the exponent
-0.25 tends to weight more heavily the data from the high Reynolds number Ii
region, but this value has a long analytic history. The skin friction data
are not so conveniently described but the flat plate and the asymptotic
states of accelerated flows up to K = 2.5 x 10" are reasonably well
described in terms only of the momentum thickness Reynolds number by

cf 0 < K <2.5 x 106 A!
"0 = 0.0128 Rem" 25  (40)

500 < Rem < 5000

It should be borne in mind that for each asymptotic accelerated flow there
exists only one possible value for Rem , dependent upon the value of K
the asymptotic value, given earlier in Figure 22. When used to predict
these asymptotic values of cf/ 2 from the asymptotic values of Rem , the
equation given above tends to underpredict by about 10%.

Blowing can be discussed either in terms of the effects at a particular
location (x-Reynolds number) or at a particular local state of the boundary
layer (enthalpy thickness Reynolds number). The local descriptor has more
generality since it can be applied in cases of non-uniform velocity. It
has been found, by comparison with the data presented here and in the
original source documents, that the effect of blowing (or suction) can be
calculated with reasonably good accuracy using a form derivable from a
Couette flow model, evaluated at constant boundary layer thickness Reynolds

number:

cf St rnl4 .25cf * (1 + B)B (41)
To Rem

or
Reh
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This relationship is recommended within the following range of conditions.

U constant flows (-0.01 F < 0.010)
Decelerating flows (-0.20 < m ; -0.004 < F < +0.004)

Accelerating asymptotic flows (K < 1.75 x 106; 0 < F < +0.004)

The range of applicability of Eq. (41) can be recalled by the following nota-

tion, which suggests that three parameters are important:

cf

c St = f(U(x) ; B ;size) (42)Cfo st-

For accelerating flows with constant K an asymptotic condition may be

reached such that "size" is a unique function of K and B . For such
corditions the list of variables is reduced to two, since "size" is fixed
once K and B are chosen. Hence the comparison can be made between
asymptotic states. For flat plate and decelerating flows, "size" is a
variable and the comparisons must be made at the same boundary layer thick-
ness Reynolds numbers. Confirmation of the validity of Eq. (41) is shown in
Figure 35 which includes friction and heat transfer data for accelerating,

decelerating, and flat plate cases, with blowing and with suction.
The shape factor has been found to correlate reasonably well for all

values of blowing and suction and for all variations of free stream velocity
if described in terms of (B + ý), a parametric group occurring in one formm
of the momentum integral equation. Figure 36 shows H versus (Bm + 0) for

conditions covering accelerations and decelerations with uniform values of
blowing along the surface. With the exception of 4 data points at (B +m
a) = -1.0 , the remainder of the data are well organized. The errant
points may well have been laminarized by the combined effects of suction and
acceleration.
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I A MATHEMATICAL MODEL FOR SOLUTION OF THE MOMENTUM EQUATION

During the past decade enormous strides have been made in our ability

to solve the partial differential equations of the boundary layer, using

j finite difference techniques and the power of the digital computer. To

all intents and purposes mathematically exact solutions to the boundary layer

' equations can be obtained for virtually any kind of boundary conditions, pro-

vided that the turbulent transport processes are adequately modeled. The

speed with which such solutions can be obtained has made direct solution of

the boundary layer equations for particular applications a practical engine-

ering design tool.

We are not going to be concerned here with the details of any of the

several finite difference procedures in common use today, but rather with a

scheme that has been used successfully to model the dominant turbulent shear

stresses in transpired turbulent boundary layers.

The time averaged momentum equation of the boundary layer, particularized

for the moment to constant fluid properties, and neglecting normal turbulent

stresses, may be written as follows:

- -+ •yV p dx-a 0 (43)

"If the turbulent shear stress W is known at all points in the
"boundary layer, the momentum problem simply becomes one of solution of

Eq. (43) for any desired boundary conditions, including transpiration.

Although progress continues to be made in turbulent transport theory
in general, and turbulent boundary layer theory in particular, it is still

fair to say that there is as yet no truly fundamental theory that may be

used as a universal starting point for solution of turbulence problems.

Turbulent boundary layer theory has gone through, and continues to go through,

a series of stages involving successively higher orders of sophistication.
I Each level in this development has involved the correlation of experimental

data at a more fundamental level, and has opened up the possibility for
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solving successively broader ranges of problems with a single consistent

set of empirical constants. The information and calculating procedures to

be presented here do not represent any very bold steps toward a more general

theory, but they will allow computation of equilibrium and near equilibrium

boundary layers as precisely as any scheme so far devised. Higher order

models are presently being investigated by numerous researchers, and hope-

fully will lead to theories that embrace still broader classes of applications,

although probably at the price of complexity and computation cost.

We will first introduce the concept of eddy diffusivity for momentum,

m as a convenient way of expressing the turbulent shear stress.

u = -Em-..#(4
mT -6 D (44)

Already, we are in the realm of theoretical controversy, since implicit
in Eq. (44) is the notion that the turbulent shear stress goes to zero in

the absence of a gradient in the mean velocity profile. In spite of its

short-comings, the eddy diffusivity concept has the virtue of allowing one

to use the same computation program for both laminar and turbulent boundary

layers. Since most real turbulent boundary layers grow jut of laminar

boundary layers, the advantage is obvious.

It is convenient to visualize the turtulent boundary layer as con-
sisting of an inner wall-dominated region, and an outer region which actually

occupies most of the thickness of the boundary layer. However, for most ap-
plications the inner region is, by far, the most important one, and it is on.

this region that we will focus primary attention.

The inner region may be subdivided into a region immediately adjacent
to the wall in which viscous forces predominate (em approaches zero), and a

region farther out in which momentum transfer is almost entirely by turbu-
lent transport processes, but in which the scale and intensity of the

turbulence is still strongly dependent upon the proximity of the wall.
The Prandtl mixing - length theory, despite much criticism for many

years, still provides a simple and remarkably adequate basis for describing

the turbulent momentum transport process in the inner region, at least for

equilibrium and near equilibrium boundary layers. The mixing length, X
is defined such that it is related to the eddy diffusivity for momentum

and the mean velocity gradient by the following equation:
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e1 m I, ' (45)

Outside of the viscous-dominated region immediately adjacent to the

wall, the mixing-length in the inner part of the boundary layer is found

to be proportional to distance from the wall, with a proportionality

i mfactor, k that is independent of either transpiration rate or pressure

gradient. Figure (37) shows some measurements of the mixing-length for a

3 number of cases of transpiration, both blowing and suction, with no pres-

sure gradient and with an adverse pressure gradient, Results for favorable

3 pressure gradients are similar. Note that all of the data in the region

Ui near the wall converge on a single linear relation with k = 0.41 . We

will model the region outside the viscous near-wall region (which latter

we will now term the viscous sublayer), but inside of the outer, or "wake",

! Iregion, by:

: I . = ky (46)

where k = 0.41

The viscous sublayer immediately adjacent to the wall can be modelled

in a simple way by introducing a damping function that forces the mixing-

i1 length k to naught at the wall. Designating the damping function as D

the mixing-length over the entire inner region may then be expressed as:

S2. = kyD (47)

I The damping function D can be satisfactorily expressed in a number

of different ways. A scheme which is very popular today, and which was

Sifirst suggested by Van Driest (1956), is an exponential function which

leads to mean velocity profiles that correspond quite well with those

observed experimentally.

D = 1.0- exp (-y+/A+) (48)I +
where y is the non-dimensional distance from the wall

surface, expressed in so-called "wall" coordinates, y+= yv4cToPp/v

I and A+ is the effective thickness of the viscous sublayer expressed
in the same way.
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The effective thickness of the viscous sublayer is probably the single

most important parameter in computation of turbulent boundary layers. The

sublayer, though comprising a very small fraction of the total boundary

layer thickness, is the region where the major change in velocity takes

place, and, except for very low Prandtl number fluids, is the region wherein

most of the resistance to heat transfer resides. If this region is modelled

accurately only a very approximate scheme is needed throughout the rest of
the boundary layer.

The thickness of the sublayer is evidently determined by viscous

stability considerations. The experimental evidence is that a favorable

.. pressure gradient (dP/dx negative) results in increased thickness, while an

adverse pressure gradient has the opposite effect. Transpiration into the

boundary layer (blowing) decreases the thickness, if it is expressed in non-
dimensional wall coordinates, while suction has the opposite effect. Surface

roughness, while not a subject of this paper, causes a thinning of the sub-

layer.

The effects of pressure gradient and transpiration on A+ are con-

veniently expressed in terms of a non-dimensional pressure gradient parameter,+ -+

p , and a non-dimensional blowing parameter, v+ , both of which can be
either positive or negative. In both of these parameters the main argument

is normalized with respect to the same wall coordinate parameters as is the

effective sublayer thickness in A+ +

The functional dependence of A+ upon p+ and vo has been deduced

experimentally by examination of a very large number of velocity profiles
obtained as part of the Stanford project over a period of six years. Before

examining these results, however, it should be mentioned that considerable
progress has been made in both qualitatively and quantitatively describig._
this function using some relatively simple theoretical ideas and a minimum

of experimental data. A number of investigators (for example, Bradshaw

(1969)) have discussed the significance of a minimum value of a local

Reynolds number of turbulence as being a requisite for maintenance of a
turbulent boundary layer. Numerous investigators, going back to the early

theoretical work on the transpired turbulent boundary layer by Rubesin

(1954), have implicitly introduced this concept as a basis for defining the
thickness of the viscous sublayer. The local Reynolds number of turbulence

can be defined as:
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Ret= ¶fIij/ (49)

!t 'the turbulence length scale, can be considered to be effectively
the same as the mixing - length k = ky . Thus,

IRet = ky F7pV (50)

I It should also be noted that by combining Equations (44) and (45) with (49)

and (50),

Ret = :m/v (51)

j Furthermore, outside of the viscous sublayer rt T , so Eq. (50) can also

be expressed as,

IRet =ky+ AFI7T (52)

I |An examination by Andersen (1972) of a large amount of experimental

data for transpired turbulent boundary layers for both favorable and adverse
i pressure gradients indicates that Ret is approximately the same number

(about 33.0) in every case at a point outside of the sublayer defined as

approximately y+ = 2.5 A+ . Thus the thickness of the viscous sublayer,

Iand by implication A+ ,is evidently characterized by a critical value of
the Reynolds number of turbulence. It follows, incidently, that if Ret
falls everywhere below this value the turbulence in the boundary layer
will damp out and a laminar boundary layer will result, and this is pre-f cisely what is observed in strongly accelerated flows where the shear stress
decreases so rapidly with distance from the wall that Ret never reaches
33.0. The important point here, however, is that with these facts alone

it is possible to generate the functional dependence of A+ upon p
and v1 The following equation is an empirical representation of the experimental
data on A+ , but it could just as well be described as an empirical representa-
tion of Andersen's analysis. In either case the algebraic form of the equa-

tion has no particular significance.

*1
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A+ + 25.0 - (53)
- p+

a ( + + 1.0:.0 4,
+ cv

+

where a = 7.1 if vo> >0.0, otherwise a = 9.0

b 4.25 if p < 0.0, otherwise b = 2.0
; +

c 10.0 if p < 0.0, otherwise c = 0.0

Equation (53) is plotted on Figure 38 where the effects of pressure
gradient and transpiration can be clearly seen. Note that a strong
favorable pressure gradient forces A+ to very high values, and that blow-
ing lessens this effect, while suction increases it. If A+ becomes very
large the viscous sublayer simply overwhelms tih, entire boundary layer, and
this is the "laminarization" discussed earlier. In fact most of the trends

noted earlier in connection with the experimental data on Stanton number are
recoverable by varying the value of A+ . The thickening of the sublayer
caused by a favorable pressure gradient (accelerating flows) results in a
decreased Stanton number simply because the major resistance to heat transfer
is in the viscous sublayer.

Note that an adverse pressure gradient causes a decrease in sublayer
thickness. Interestingly, where these results are used to compute velocity

profiles for adverse pressure gradients and no transpiration, and when the+ +

velocity profiles are plotted on u , y coordinates, they tend to fall on
the same line as is obtained for no pressure gradient in the near-wall region,
but outside of the sublayer. This is the "law-of-the-wall" which has long
been noted to be universal for no pressure gradient and adverse pressure

gradient flows. The conventional "law-of-the-wall" does not apply for strong

favorable pressure gradients. The universality of the "law-of-the-wall" for
adverse pressure gradients results from compensating effects of the decreased
sublayer thickness and the positive pressure gradient.

A+ as represented by Eq. (53) and Figure 38 has been evaluated under+

essentially equilibrium conditions, i.e., conditions under which vo and/or
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p a.e invariant or, at worst, are varying only slowly along the surface.-

This is a case of inner region equilibrium. It is probable that when a sud-

den change of external conditions is imposed, the inner region comes to
B .equilibrium more rapidly than the outer region, although this has not been

S+ +
proved. In any case, under non-equilibrium conditions where vo or p

are changing rapidly, it nas been observed that the sublayer does not change
, A+

instantaneously to its new equilibrium thickness, i.e., A does not im-

1 mediately assume its new equilibrium value. It can be hoped that some of

the higher order models of turbulence will predict this effect, but in the

meantime, a reasonably satisfactory expedient is to use a rate equation of

a type suggested by Launder (1968):

dA4deff + +
ef (Aff - A eq)/C (54)

dx+

+ +
A is the locally effective value of A+ , while A is the equilibriumeff eq
value obtained from Eq. (53). A value of C of about 4000 has been found to

be reasonable.
All of the discussion up to now has been concerned with the inner region

of the boundary layer. The outer region, comprising the greater part of the
boundary layer thickness, is of considerably less importance in predicting

performance, and thus can be handled successfully using more gross approxi-

mations. This statement may not be valid for strongly non-equilibrium

boundary layers, especially under adverse pressure gradient conditions. its

validity for accelerating flows with and without transpiration will be demon-

strated later. In any case, for equilibrium or near equilibrium boundary
layers, either the assumption of a constant value of eddy diffusivity over

the entire outer region, or the assumption of a constant value of mixing-

length over the entire outer region yields approximately the same result.

If a constant eddy diffusivity is used, an empirical correlation of eddy

diffusivity as a function of either displacement or momentum thickness
Reynolds number can be obtained. However, if mixing-length is used in the

inner regions, it is computationally simpler to use the mixing-length con-

cept for the entire boundary layer.
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Figure 37 shows measured mixing-length data for the outer region fc;-

a number of cases of transpiration with zero and adverse pressure gradients.

The adequacy-of an assumption that the rdixing-length is co•stant in the outer

region may be judged from these data. A further simplification is also il-

lustrated in this figure. The outer region mixing-length scales approximately

on the total boundary ldyer thickness. A satisfactory computation scheme is

to express the outer region mi;ing-length as a fixed fractioti, A , of the

99 percent boundary layer thickness.

S= .9(55)

-A value of X 0.084 works reesonably well over the entire range of experi-

Se-ttal data discussed in this paper, including favorable and adverse pressure

gradients., blowing and suction. One then simply evaluates £ from E-. (47)

until tiie value obtained equals that given by Eq. (55), and then uses the

latter value for the remainder of the boundary layer.
There is some evidence that the effective value of X is larger than

0.084for boundary layers in which the momentum thickness Reynolds numbers

is less than 5500. This may be a result of the fact that at low Reynolds

numbers the sublayer is a larger fraction of the boundary layer and the

approximation of a constant mixing-length over the remainder of the boundary

layer is less valid. For strong blowing, even at low Reynolds numbers, X

again appears to be close to 0.084, and this is consistent with the above

explanation because the sublayer is then thinner. The following equation

has been found to describe tne observed low Reynolds behavior of A quite

well:

0.250 Re-MI 8 (1. - 67.5 F) (56)

IF A < 0.084; X 0.084

A Mathematical Model for Solution of the. Energy Equation

The time-averaged energy equation of the boundary layer, particularized

to constant fluid properties and negligible viscous dissipation, and neglecting

turbulent conduction in the stream-wise direction, may be written as:
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.-+ 0 Iy -- = o (57)
ax ay Ty [ y-

This equation can be solved for any desired boundary conditions pro-

viding the ,;elocity field has been established first.by solution cf the

m momentum equation, and provided that-we have information on the turbulent
heat transfer rate, Trv.

i'l Analogous to the methor of soiution of the momentum equation, we will

introduce the corncep'- of eddy diffusivity for heat, Eh

~v - .hP= -Dy : (58)

-I
Although it might be fruitful to attempt to evaluate either frT

or ch on the basis of assumptions that are independent of the turbulent

shear stress, it seems plausible that there is some kind of relationship

between r and 7 , or Ch and em . Therefore most analysts have

found it convenient to introduce the concept of a turbulent Prandtl number,
Prt , defined as follows:-

Prt C (59) I
i Introducing Eq. (58) and (59) into Eq. (57) we obtain:

y/Prt) y = 0 (60)

If Prt were known, Eq. (60) could be solved for any desired boundary
conditions so long as the momentum equation had been previously solved.

Evaluation of the turbulent Prandtl number can thus solve one of the central

problems of turbulent heat transfer.

A very simple physical model of the turbulent m~ientum and energy

transfer processes leads to the conclusion that ch = em , i.e., Prt = LO00
(the "Reynolds Analogy"). Slightly more sophisticated models suggest that
Prt > 1.00 when the molecular Prandtl number, Pr , is less than unity.

Still other models suggest that Prt equals 0.7 or 0.5 in turbulent wakes.
"The experimental data a'e not abundant, but Figures 39, 40, 41, and 42

show the measurements, respectively of Simpson, Whitten and Moffat (1970),
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Kearney (1970), and Blackwell (1972) with air as a working substance. These

were all evaluated from measurements -f the slopes of mean velocity and

temperature profiles, together with estimates of shear stress and heat flux

profiles, and the experimental uncertainty is high, especially near the wall

(y4 < 20) and near the outer edge of the boundary layer. The data on Figure

39 are all for constant free-stream velocity, but cover a wide range of

blowing and suction conditions. The data on Figure 40 are for accelerated

flows with a considerable range of blowing. Figure 41 shows three separate

test runs with no transpiration, but first with no pressure gradient, and -

then two successively stronger cases of equilibrium adverse pressure gradients.

Finally Figure 42 shows three test runs for an adverse pressure gradient with

three cases of successively stronger blowing.

Despite the very considerable scatter of data, a few conclusions seem.

definitely warranted. First, the turbulent Prandtl number, at least for

air, apparently has an order of magnitude of unity. Thus the Reynolds

Analogy (Prt = 1.0) is not a bad approximation.

The second conclusion is that Prt seems to go to a value higher than

unity very near the wall, but is evidently less than unity in the wake or

outer region. The situation very close to the wall is especially vexing

because it is extremely difficult to make accurate measurements in this

region, and yet it seems evident that something interesting and important

is happening in the range of y" from 10.0 to 15.0 . The behavior of Prt

at values of y+ less than about 10.0, is highly uncertain but fortunately

not very important because molecular conduction is the predominant transfer

mechanism in this region. At the other extreme, in the wake region Prt

does not need to be known precisely because the heat flux tends to be srall

there.

Another conclusion, for which the evidence is not yet very strong,

is that there is some small effect of pressure gradient on Prt . Figure

41 suggests that an adverse pressure gradient tends to decrease Prt . Al-

though the scatter of his data was very large, Kearney (1970) reported that

there seemed a tendency for Prt to be increased by a favorable pressure

gradient (an accelerating flow).

The results on Figure 39 suggest that transpiration does not influence

Prt unless there is an effect very close to the wall that is hidden in the
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experimental uncertainty in this region. This conclusion is also implied

by the results on Figure 42.
tAany an.lysts have been content to assume that turbulent Prandtl number

is a constant throughout the boundary layer, and indeed the assumption that

Prt = 0.9 , for air, will generally yield satisfactory predictions of overall

P !heat transfer rates. However, it is found that the assumption of a constant

Prt will yield temperature profiles that do not correspond well with experi-.
ment except in the regions very close to the wall, and near the outer edge

"of the boundary layer. Temperature profiles can be much more accurately pre-•.-
dicted If some attempt is made to introduce a variation of Pr with

that at least -approximates the variation seen in the experimental data. Both

of the following equations, neither of which have any theoretical basis, have'

been used with reasonable success by the authors for calculations fur air:

!, +. 1/4

Prt = 1.43 - 0.17 y 1 (61)

IF t< 0.86; Prt= 0.86

Prt 0.90 + 0.35[1 + cos(rRY/37)1; y < 37 (62)

= 0.90; y+ > 37

- 0.60 ;y+ > (X 6.9 9/k)

A pressure gradient effect has not been included in these empirical

equations because of insufficient information but, in the section to follow,

one effect of this omission will be illustrated.
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t:A
SOME EXAMPLES OF BOUNDARY LAYER PREDICTIONS

I The quality of boundary layer predictions that can be made using the

mixing-length model and associated empirical functions will now be demon-

3I strated. Four examples have been chosen for illustration. The first is

the case of the simple impermeable wall with no pressure gradient, and this

is of course both an equilibrium momentum boundary layer and an equilibrium

thermal boundary layer. The second is an adverse pressure gradient equilibrium

boundary layer. The third is an adverse pressure gradient boundary layer with

SI strong blowing which is not precisely an equilibrium boundary layer, but shows

near-equilibrium characteristics. The final example is a strongly accelerated

I boundary layer with strong blowing, but in which both blowing and acceleration
are abruptly stopped at different points along the surface to yie'd non-

j Iequilibrium conditions.

A modification of the Spalding/Patankar (1967) finite difference program

was used for all predictions, although any good Finite difference procedure

should yield similar results.

Figure 43 shows cf/ 2  as a function of momentum thickness Reynolds num-

ber for the simple impermeaLle wall with no pressure gradient. Shown for
comparison is the recommendation of Coles (1962), which is based on an exten-

sive examination of the available data, and also two sets of data from the

Stanford project, the earlier results of Simpson, and the more recent results

of Andersen. The predicted friction coefficients coincide closely with Coles',
and indeed the auxilliary functions were chosen to force this coincidence.

The corresponding heat transfer results are shown on Figure 44 where

comparison is made with two sets of data from the Stanford project, the re-
sults of Whitten (1967) and of Blackwell (1972). The Blackwell data at

Reh below 2000 are a little lower than would be expected for a corresponding

equilibrium thermal boundary layer, because the thermal boundary layer

I started out at the beginning of tile test section much thinner than the mo-
mentum boundary layer.

I It should also be added that all of these results were obtained using

low velocity air with temperature difference fron 25 to 35 degrees F

Although the influence of the temperature dependent fluid properties has not

really been systematically investigated, and indeed small temperature dif-
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ferences were deliberately used to avoid this problem, calculations with

the computer program using real properties suggest that the temperature-
difference effect is to reduce Stanton number by about I or 2 percent. This
effect has not been considered in any of these results; the predictions have
been made using constant properties, and the experimental data have not been

corrected for any variable properties effect.
Note that if the friction co-fficlent pred,:tlon on Figure 43 is ac-

ceptable, the heat transfer prediction on Figure 44 is entirely dependent
upon the turbulent Prandtl number function employed, because everything else

in the model is identical, and in fact both predictions were made simultaneously.
In the upper part of Figure 45 both friction and heat transfer results

are shown for an adverse pressure gradient test run with no transpiration.
For this case U. was varied by,

U = U xm (63)

where m = -0.15 . Both the Clauser shape factor, G , and 0 were found to
be essentially constant for the experimental data over most of the test section,
so this is believed to be an equilibrium momentum boundary layer.

The prediction program also produced essentially constant values of G

and $ . The friction prediction is excellent, but the heat transfer pre-
diction is about 5% low. Experimental uncertainty may account for this dif-

ference, but it is also quite possible that we see here evidence of a pres-
sure gradient influence on turbulent Prandtl number. A 10 percent decrease
of Prt throughout the boundary layer would make the difference.

In the lower part of Figure 45 are the results for an adverse pressure
gradient test with rather strong blowing. Because F was held constant

(.004) this is not an equilibrium boundary layer, either momentum or thermal.
For an equilibrium boundary layer it would be necessary for v0 , and thus
F , to decrease with x . However, the departure from equilibr 4um is not

great and the predictions for both cf/ 2 and St are seen to be quite
good.

The scheme described not only predicts cf/ 2 and St quite adequately,
but does equally well for velocity and temperature profiles. Figure 46 shows

a pair of profiles for the adverse pressure gradient, strong blowing case dis-
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I cussed above. These are presented in dimensional coordinates so that normal-

ization will not tend to mask anything, and are presented for a point 70

inches downstream so that a small percentage drift of the predictions would

show as a large effect. The results shown on this figure would be hard to

improve upon.

The final illustration, Figure 47, shows an example of prediction of

a very difficult case. In this run the flow starts at constant free-stream

-velocity but with relatively strong blowing, F = 0.004 . This flow is then

subjected to a very strong acceleration starting at X = 2 ft. In approxi-

mately the middle of the accelerated region the blowing is removed entirely.

Then at about X = 3.4 ft. the acceleration is rer'oved, and for the re-

I mainder of the test section there is no blowing and no change in free-stream

velocity.

i An important thing to note-here is that the model responds remarkably

I to the abrupt changes in boundary conditions, and predicts the resulting

non-equilibrium boundary layer very well indeed. Of particular significance

is the abrupt rise in Stanton number following the removal of blowing. The

ability of the prediction to follow the data at this point is heavily de-

Spendent upon the use of the rate equation and lag constant, Eq. (54). This

shows very graphically the importance of the sublayer and the fact that the

sublayer does not Instantaneously assume its new equilibrium thickness after

an abrupt change of boundary conditions. There may well be significant non-

equilibrium effects in the outer part of the boundary layer, but these have

a relatively minor influence on overall heat transfer rate.
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